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ABSTRACT: Smart  phones  are  becoming  essential  in  our  lives,  and  Android  is  one  of  the  most  popular operating systems. 

Android OS is wide-ranging in the mobile industry today because of its open source architecture. It is a wide variety of applications 

and basic features. App users tend to trust Android OS to secure data, but it has been shown that Android is more vulnerable and 

unstable. Identification of Android OS malware has become an emerging research subject of concern. This paper aims to analyse 

the various characteristics involved in malware detection. Mobile devices have grown exponentially in terms of functionality in the 

recent years, since they provide almost all the functions that a computer provides. Among the various operating systems  employed,  

Android  has  become  a  prominent  one  in  the recent  years  due  to  its  huge  user  base,  since  the  availability  of android 

applications is free in the android application market. 

 

Due to  his  huge  user  base  it  has  become  a  very  likely  target  for attackers.  Among  the  available  applications  a  vast  

majority  of them  are  not  authenticated  formally  and  hence  are  malicious. These applications may steal the private information 

from the user’s device. The proposed framework ensures that these kind of applications are detected at high accuracy, it provides a 

machine learning-based malware detection system on Android to detect the malicious applications to enhance security and privacy 

of smartphone users.  The  proposed  framework  monitors  various permissions  related  to  the  android  applications and  analyses 

the features by using machine learning classifiers to authenticate the applications. It also addresses malware detection methods. The 

current detection mechanism utilizes algorithms such as SVM, Neural Networks and other algorithms for machine learning to train 

the sets and find the malware. The results of our empirical evaluation show our system is competitive in terms of classification 

accuracy and detection efficiency. At dataset Drebin (benign 5.9K and malware 5.6K) and AMD (benign 20.5K and malware 

20.8K), our system has achieved 96% and 98% detection results both in accuracy and F-measure. Compared with the state-of-the-

art system in detecting evolving malware called MaMaDroid on the dataset of 6.0K benign and 20.5K malicious samples spanning 

from 2010 to 2017, our system achieves higher accuracy while improving detection efficiency by 15 times.. 
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I. INTRODUCTION 

Now-a-days the role of mobile phones in the human lives has increased.  Android  has  become  an  inseparable  part  of  the current  

mobile  systems,  due  to  the  openness  of  free  source. Android covers around 85% of world’s smartphone market until 2018. At 

the same time, the open source availability is also a bait since it attracts a lot of attackers. According to the recent report, in 2018, 

360 Internet Security Center intercepted about 4.342  million  new  malware  on  mobile  terminals,  or  about 12,000  per  day.  

These  malicious  apps  are  created  to  perform different  types  of  attacks  such as  stealing  private information, sending message  

without  the  user permission,  baiting  users to malicious  websites,  etc.,  which  may  be  serious  threat  to  the privacy  of  users.  

By  time  these  malicious  applications  have become  hard  to  detect  or  even  prone  to  detection,  and  even some malicious 

apps have more than 50 variants, making it hard for  detection.  Therefore, the detection techniques must be rationalized to detect 

these types of malwares in every circumstances. The researches based on permissions and intents of Android apps are more prone 

to false positives, since benign apps also require sensitive permissions, which make them to be misclassified as malware easily. An 

Android malware detection method based on method-level correlation relationship of application’s API calls is proposed.  The 

behaviour of an application is determined by the source code through the user-defined methods, and each of the methods implement 

specific operations by invoking API calls. The process of differentiating the  combinations  of  API  calls  in the method  of  
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malicious and benign  apps  is  the  key  to  establish  the  detection  system. Therefore, association rule is introduced to analyse 

technology and characterize the API calls’ relationships in the same method and capture app’s behavioural information. 

In the implementation of Android malware detection using machine learning, the two primary sources of the feature are static 

extraction and dynamic extraction. Static features are extracted from the manifest, Dalvik bytecode, native code, sound, image, and 

other reversed APK files. Dynamic features are collected from the log records, code execution paths, variable value tracking, 

sensitive function calls, and other behaviours in the process of application execution by running APK files in a monitored 

environment. 

Although the detection method based on static features has some limitations compared with those based on dynamic ones, such as 

it is challenging to combat code obfuscation, it also has distinct advantages:(i)Full code coverage: static feature extraction can cover 

all code and all resource files by scanning code or symbolic pseudo execution. In contrast, dynamic feature extraction can hardly 

cover all code execution paths. Many applications require users to provide login credentials to use most of the features, making it 

difficult to detect all the functions in dynamic execution, resulting in incomplete feature extraction.(ii)Reliable detection efficiency: 

static feature extraction will complete the detection task in the expected time because it does not need to run the application. In 

contrast, dynamic feature extraction requires triggering various functions in code execution, which will consume lots of time. While 

the application is running, it takes some time to simulate a click-through interface. The program may perform a very complex 

computation or enter an infinite loop. These conditions make it difficult for the detection task to be completed within the specified 

time frame.(iii)Unperceived by malicious code: static detection does not require the codesʼ execution, so malicious applications 

cannot recognize that they are under check. Although some malware attempt to make the static analysis more challenging by setting 

up interference codes, these added codes may themselves be an identifier to assist in identifying malicious applications.(iv)Easier 

to generate generic fingerprint identification: static malicious sample analysis is more inclined to extract features with invariance 

and universality. In contrast, dynamic analysis is very likely to be affected by the operating environment. Statically extracted 

features are suitable for fingerprinting and can be used for the rapid predilection of large-scale malicious applications. 

 

There are some surveys about Android malware detection published in the past few years. The authors in analysed the Android 

security mechanism and typical malware detection methods. The authors in focused on applying deep learning algorithms such as 

Restricted Boltzmann Machines, Convolutional Neural Network, Deep Belief Network, Recurrent Neural Network, and Deep Auto 

encoder to malware detection and analysed the advantages and results achieved. The authors in is mainly concerned with the analysis 

of Android malware variants’ detection methods. The authors in investigated Android malware detection and protection technology 

based on data mining algorithms. The study in collected the literature research of the past few years, systematically analysed the 

static detection technology, and discussed datasets, features, algorithms, empirical experiments, and performance measures. The 

study in  introduced the Android architecture, security mechanism, malware classification, and entire detection process, including 

sample collection, data pre-processing, feature selection, machine learning model construction, and experimental evaluation. The 

study in comprehensively discussed static, dynamic, and hybrid detection techniques. The study in mainly focused on mobile 

malware detection techniques, analysed signature-based detection, anomaly-based detection, and other traditional detection 

methods. The study in  discussed various threats and the current Android platform security state, introduced three attack types, 

explained the factors contributing to the increase of malware, and analysed defensive mechanisms of Android protection. 

 

The above surveys have done excellent work, but there are still some aspects that can be improved. For example, the sources of 

static features, the challenges of obfuscation technology to static analysis, and the deterioration issues of machine learning models 

are not investigated in detail. Our work aims to provide a comprehensive survey about Android malware static detection based on 

machine learning technologies. To this end, we searched in IEEE, ACM, Springer, Wiley, Hindawi, and other databases and used 

Google Scholar and DBLP to find the related papers. It is worth noting that we only use research papers from DBLP since 2016 in 

statistics of static feature types, machine learning algorithms, dataset usage, papers’ number, and evaluation metrics. The reason is 

that DBLP has become an authentic database, and the papers it saves are of relatively high quality and are relatively few in number. 

We can manually check the detection technology, algorithm model, and evaluation method used in each article to form accurate 

statistical results. Based on the papers we collected on Android static malicious application detection, we finish this survey work. 

 

In our work, we analysed the Android application static features and the typical obfuscation methods, discussed machine learning 

algorithms suitable for Android malware detection, explained evaluation metrics of machine learning models and sustainability 

issues, investigated the technical route, advantages, and disadvantages of the existing research, and made an outlook on the possible 

future research directions in this field. The main contributions can be summarized as follows :(i)We carried out a comprehensive 

review of Android malware’s various static detection methods based on machine learning. The basic principles, feature sources, 

datasets, performance metrics, contributions, and limitations of the methods were compared vertically.(ii)We analysed the Android 

application composition, the source of static feature extraction, and the feature vector generation method in detail.(iii)The limitations 

of current methods were discussed, and the future development directions were prospected.  

  

2. RELATED WORK 

 

Hanqing Zhang et. al [1] presents a system which first splits each android application’s source code into function methods, and  the  

abstracted  API  calls  of  them  is  formed  into  a  set  of abstracted API calls transactions, whose confidence of association rule is 
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calculated to form  the behavioral semantics for  describing  an  application.  Further  using  machine  learning the  system  can  

differentiate  between  benign  and  malicious applications.  

 

Zarni Aung et. al [2] presents a method in which the features from the Android. apk files are extracted. The extracted features are  

added  in  a  dataset,  which  forms  the  basis  of  the  malware detection  framework.  Using machine learning approaches the 

validation process is done.  

 

Pengbin Fen et. al [3] presents a dynamic analysis framework called  Android,  based  on  dynamic  behavior  features.  Android 

uses ensemble learning algorithm to distinguish between malicious and benign. It also employs feature selection algorithm which 

removes unwanted noise and features and extracts critical behavior features.  

 

Gianluca Dini et.al[4] differentiates malwares into different classes based on their actions. MADAM a host based malware detection 

system is employed which simultaneously analyses the features at different levels, such as kernel, application, user and package.  

MADAM employs a very huge dataset thus this system ensures safety from almost every malware 

 

In  [7],  the  model  named  FAMD  (Fast Android  Malware  Detector)  was  proposed  that  extracted Dalvik code sequences and 

permissions from the samples and Applied CatBoost classifier to detect malware apps. In [8], the authors extracted various static 

features from source code and manifest  files,  and  a  linear  SVM  algorithm  was  applied  to detect  malicious  apps.   

 

Similarly the authors  in  [9]  applied machine  learning  algorithms  on  several  static  features  and manifest components for 

detection. In some other works like [10], and [11] malware detection is performed by extraction of static features on the Android 

platform. The identification of the most important permissions to differentiate malware from benign apps is done by the SIGPID 

model presented in [12].  The authors applied pruning with association rules mining for ranking and identifying the important 

permissions.   

 

The dangerous and harmful patterns of permissions within the malicious apps were analyzed by Moonsamy et al. [13]. The authors 

in [14] combined permissions and intents for detection using PCA and machine learning techniques. The authors in [15] used 

permissions for malware detection using gain ratio, J48, Multilayer Perceptron, Sequential Minimal Optimization (SMO), and 

Randomizable filtered classifiers. Permissions  and  intents  were  ranked  with  information  gain in  [16]  and  further,  that  ranking  

was  applied  to  detect malicious apps.  Likewise, in [17] and [18], authors applied various machine learning algorithms on manifest 

Components for  malware  detection.   

 

 

In  [19],  factorization machine  architecture  was  applied  by  the  authors  on  the collection of manifest features for malware 

detection in apps.   

 

The malign score was further used for malware detection.  Some recent techniques like [20] and [21] have also examined manifest 

features for malware detection. However, none of the above-mentioned works have aimed to find the best set of manifest features 

for effective Android malware detection.  In  this  work,  we  aim  to  find  the  best  set  of manifest  features  which  can  give  

better  accuracy  in  the detection of malicious apps. 

 

The authors in [22] applied Factorization Machine architecture on the set of manifest   components to detect malicious Android 

apps. Sato et al. [23] evaluated the malign score for each of the manifest file components depending upon the number of malicious 

applications the component is present in. They further used that malign score for malware detection.   

 

The work done in [24] is about a Feature transformation-based Android Malware detector which takes well-known features   and 

introduces three  new  types  of feature transformations that transform these features irreversibly into a new feature domain. None 

of the above-discussed works have aimed to find the best  feature  set  comprising  manifest  file  components  for malicious  apps  

detection  in  Android.   However,  our  work aims  to  find  the  best  feature  set  that  could  give  better detection accuracy. 

 

3. PROPOSED MACHINE LEARNING MODELS 

SUPPORT VECTOR MACHINE  

In machine learning, support-vector machines (SVMs, also support-vector networks) are supervised learning models with associated 

learning algorithms that analyze data for classification and multivariate analysis. Developed at AT&T Bell Laboratories by Vladimir 

Vapnik with colleagues, SVMs are one among the foremost robust prediction methods, being supported statistical learning 

frameworks or VC theory proposed by Vapnik and Chervonenkis. Given a group of coaching examples, each marked as belonging 

to at least one of two categories, an SVM training algorithm builds a model that assigns new examples to at least one category or 
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the opposite , making it a non-probabilistic binary linear classifier (although methods like Platt scaling exist to use SVM during a 

probabilistic classification setting). An SVM maps training examples to points in space so on maximize the width of the gap between 

the 2 categories. New examples are then mapped into that very same space and predicted to belong to a category supported which 

side of the gap they fall. Type-II Diabetes has varying levels of seriousness. It usually gets worse over time though treatment has 

been shown to slow progression. If left untreated, Type-II Diabetes can progress to Diabetes and early cardiovascular disease..  

 

 

 

 

 

 

 

 

 

Figure : Example for Support Vector Machine 
 

MULTI LAYER PERCEPTRON 

 
Multi-layer perceptron (MLP) is a supplement of feed forward neural network. It consists of three types of layers—the input layer, 

output layer and hidden layer, as shown in Fig. 3. The input layer receives the input signal to be processed. The required task such 

as prediction and classification is performed by the output layer. An arbitrary number of hidden layers that are placed in between 

the input and output layer are the true computational engine of the MLP. Similar to a feed forward network in a MLP the data flows 

in the forward direction from input to output layer. The neurons in the MLP are trained with the back propagation learning algorithm. 

MLPs are designed to approximate any continuous function and can solve problems which are not linearly separable. The major 

use cases of MLP are pattern classification, recognition, prediction and approximation. For sequential data, the RNNs are the 

darlings because their patterns allow the network to discover dependence on the historical data, which is very useful for predictions. 

For data, such as images and videos, CNNs excel at extracting resource maps for classification, segmentation, among other tasks. 

In some cases, a CNN in the form of Conv1D / 1D is also used for networks with sequential input data. However, in most models 

of Deep Learning, MLP, CNN, or RNN are combined to make the most of each. 

MLP, CNN, and RNN don’t do everything. Much of its success comes from identifying its objective and the good choice of some 

parameters, such as Loss function, Optimizer, and Regularizer. We also have data from outside the training environment. The role 

of the Regularizer is to ensure that the trained model generalizes to new data 

 

Classification Accuracy  

Accuracy of the constructed classifier model can be calculation using the following equation.  

TP+TN  

Accuracy = (1)  
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TP+TN+FP+FN  

Where,  

TP = Observation is positive an predicted is also positive  

TN=Observation is negative and predicted is also negative  

FP = Observation is negative but predicted is positive  

FN = Observation is positive but predicted is negative  

 

4. METHODOLOGY  

DESCRIPTION OF DATASET 

The dataset describes the process of extracting features from the Android .apk files and to create a dataset from the extracted feature 

of Android applications    in    order to develop android malware detection framework.  In pre-processing, the raw data are removed 

from the data set.  Feature  extraction  is  based  on associated  analysis  of  the  API  call’s  behaviour.  Malware and benign usually 

show different behavioural patterns in the construction of function method. By using classification algorithm,  the  converted  data  

set  is  Classified  as  benign  and malicious The most popular R Programming Data analytics tool has been used to construct the 

prediction framework.  

 

DATA PRE-PROCESSING 

Dataset is collected from kaggle, Since APK files cannot be analysed directly, and some pre-processing is required before feature 

extraction.  Unlike the application for desktop based Portable Executable (PE) files, Android app also called as APK file is in zip 

file, and it can be opened with unzipping tools such as WinRAR.  After decompressing the APK file, the following files are obtained: 

AndroidManifest.xml, META-INF, res, lib, assts,  clssses.dex,  resources.arsc.  ‘‘classes.dex’’  file  is generated  after  compiling  

the  code  written  for  Android  and could  be  interpreted  by  the  DalvikVM.  In  order  to  get  the Android  app’s  behavioral  

data,  there  the  dex  file  is  to  be converted to analyzable format. Smalli code can be decompiled directly from APK files, and 

contains all the needed information, thus, it becomes the target format. Thus  used  for  creating  a  dataset  from  extracted  features  

of Android  applications  in  order  to  develop  android  malware detection  framework.  For each Android application, several 

selected features are retrieved from the corresponding application package (APK) file. The values of selected features are stored as 

a binary number (0 or 1), which is represented as a sequence of comma separated values. Each item includes the name of a feature, 

the data type of the feature, and data of the feature. 

 

MANIFEST FILE EXTRACTION  

Static features that we intend to use in our research work are defined inside the manifest file of Android applications. Hence, to 

begin with, we first extract the manifest files of the applications using Apktool.  This tool breaks the application (apk  package  file)  

into  several  components,  including  its manifest file.  

 

FEATURES EXTRACTION  

The basic unit of application’s behavioural semantics the method defined in the app’s source code. The behavioral pattern of the 

malware and benign applications differs in the process of construction  of  the  function  methods,  manifested  in  different API 

combinations  owned  by  different  function  method.  A method level associated analysis is used for the construction of the 

characteristics, since there is a need to discover the pattern of behaviour 

FEATURE RANKING  

After  creating the Bag-of-Words model for each manifest component in the matrix form, we calculate the Information Gan  (I.G.)  

score   for  each  unique  feature  present  in  S(i) feature set. Information Gain gives the measure of the information gained about a  

random  variable  by  observing another  random  variable.  In other words, it can be used to determine, amongst a given set of 

features, which one is the most distinguishing, i.e., the feature that can better differentiate between several categories. Entropy 

defines the uncertainty in all the features and I.G. determines the reduction in that uncertainty 
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BAG-OF-WORDS MODEL  

After extracting the seven features from the manifest files of  all  the  apps,  we  use  the  Word  Embedding  Technique  in NLP  

for  creating  the  Bag-of-Words  Model  for  each  of  the seven features, represented by the sets S(1), S(2), S(3),....S(7), i.e., S(i) 

for i ranging from 1 to 7.  A bag-of-words model is just a matrix that represents the occurrence of various words that are present in 

a corpus or document. The current model only focuses on whether a particular word, i.e., feature in our case, occurs in the manifest 

file or not. The proposed methodology  helps in the matrix representation of each manifest file component, which is later used  by  

machine  learning  algorithms;  wherein  each  unique entry  in  the  feature  set  is  represented  as  a  column  and applications as 

rows. 

 

5. RESULTS 

Models has been constructed using training data set (280 instances) which is 70% of original Type-II Diabetes data set. Constructed 

models have been validated using test data which is 30% of original data with respect to the parameter accuracy. Here, Accuracy 

has been calculated using confusion matrix .The best classifier model is the one with highest accuracy. 

Accuracy of SVM Confusion Matrix has been generated by SVM model for the test data(120 instances) with class as the target 

variable. The confusion matrix clearly says that 2 instances are not classified properly and 118 instances have been classified 

accurately and the accuracy of this classifier model is 98.33% 

 Accuracy of MLP Confusion Matrix has been generated by SB-SVM model for the test data(120 instances) with class as the target 

variable. The confusion matrix clearly says that 2 instances are not classified properly and 118 instances have been classified 

accurately and the accuracy of this classifier model is 97.43% 

.  

Paste your screenshots here  

 

 

CONCLUSION 

This project presented a framework is developed for classifying Android applications as benign or malicious applications using 

machine-learning techniques. The applications are downloaded from the android application market.  To generate the models, 

several features from these applications are extracted. Some of the malware applications are taken from malware sample database 

and both malware and normal applications are classified by using machine learning techniques.  In order to validate the methods 

used,200 samples of Android applications are collected and the features are extracted for each application and the trained models 

will evaluate them. we proposed a static model to detect malicious Android applications by analyzing manifest file components. 

The proposed model aimed to rank each of the manifest component using the concept of relative frequency, i.e., by comparing its 

frequency in both malware and normal dataset.  We constructed, for each of the manifest components, two rankings,  one  

highlighting  the  features  significantly  present in  malware  apps  and  the  other  representing  the  features significantly present 

in normal apps. Thereafter, we proposed a novel algorithm to find the best set of manifest features that gives highest detection 

accuracy.  The  proposed  detection algorithm applied several machine learning classifiers on the ranked  list  of  manifest  features  

to  get  their  best  set.  We achieved the accuracy of 95.90% with the proposed model on the best set of 36 features.  In  our  future  
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work,  we  will analyze,  in  addition  to  the  manifest  components,  the  Java source code and API calls of the apps to further 

improve the detection accuracy. 

 

FUTURE WORK 

Android malware detection by analyzing the manifest file components.  To  begin  with,  we  ranked  all  the manifest  file  

components  using  Information  Gain.  Further, we proposed a novel method that applied various machine learning and deep 

learning algorithms on the ranked components. The algorithm produced the best set of components that gave better accuracy as 

compared to any other set of components. The results highlighted that combining all the manifest file components for malware 

detection gave better results than the individual components.  In our future work, we will put forward a novel technique that 

combines, with manifest file components,   other features such as API calls, system calls, network traffic, etc., to detect the stealthier 

malware samples.. 
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